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Abstract We present high-resolution near-term ensemble projections of hydroclimatic changes over the
contiguous U.S. using a regional climate model (RegCM4) that dynamically downscales 11 global climate
models from the fifth phase of Coupled Model Intercomparison Project at 18 km horizontal grid spacing. All
model integrations span 41 years in the historical period (1965–2005) and 41 years in the near-term future
period (2010–2050) under Representative Concentration Pathway 8.5 and cover a domain that includes the
contiguous U.S. and parts of Canada and Mexico. Should emissions continue to rise, surface temperatures in
every region within the U.S. will reach a new climate norm well before mid 21st century regardless of the
magnitudes of regional warming. Significant warming will likely intensify the regional hydrological cycle
through the acceleration of the historical trends in cold, warm, and wet extremes. The future temperature
response will be partly regulated by changes in snow hydrology over the regions that historically receive a
major portion of cold season precipitation in the form of snow. Our results indicate the existence of the
Clausius-Clapeyron scaling at regional scales where per degree centigrade rise in surface temperature will
lead to a 7.4% increase in precipitation from extremes. More importantly, both winter (snow) and summer
(liquid) extremes are projected to increase across the U.S. These changes in precipitation characteristics
will be driven by a shift toward shorter and wetter seasons. Overall, projected changes in the regional
hydroclimate can have substantial impacts on the natural and human systems across the U.S.

1. Introduction

While global climate modeling is scientifically the most sophisticated approach to study the climate response
due to changes in various forcing factors, there exist large uncertainties in the global climate model (GCM)-
based future climate projections at regional scales. Despite the significant advancements in climatemodeling
since the first Intergovernmental Panel on Climate Change (IPCC) Assessment in 1990 [Houghton et al., 1990],
the typical resolution of a GCM in the Fifth Assessment Report (AR5) is still coarser than 150 km, which is insuf-
ficient to simulate the response of the subtle, local-scale climate processes and feedbacks that govern climate
change at fine spatial and temporal scales [e.g., Ashfaq et al., 2009; Diffenbaugh et al., 2005; Meir et al., 2006;
Suggitt et al., 2011]. The lack of advancement toward higher-resolution GCMs is partly hampered by the fact
that centennial-scale high-resolution GCM experiments are demanding both scientifically and computation-
ally and need substantial improvements in the representation of the fine-scale processes and feedbacks, as
well as in the numerical algorithms for parallel computational architectures. Therefore, as the magnitude
and distribution of hydroclimatic extremes are sensitive to the horizontal grid spacing of the climate models
[e.g., Hagos et al., 2015; Lu et al., 2014;Wehner et al., 2010], the current generation of GCMs is not very skillful in
the projection of regional climate change and hydroclimatic extremes, particularly over regions of complex
topography. Hence, the direct use of GCM-based projections is not appropriate for reliable regional to local
scale climate impact assessments and policymaking.

Currently, the scale mismatch issues can be addressed by embedding a regional climate model (RCM) within
a GCM at a relatively finer resolution over the region of interest [Giorgi and Mearns, 1999]. The GCM outputs
are treated as initial and boundary conditions during the RCM simulation. Because RCMs are configured over
a limited area, it is relatively less cumbersome to tune these models than global-scale GCMs. Moreover, the
higher spatial resolution of RCMs provides better representation of physical processes and fine-scale feed-
backs, especially over topographically complex and spatially heterogeneous regions. Of course, regional
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climate modeling has its own limitations and is in no way a substitute for GCMs in the simulation of the Earth
system's response to variations in climate forcing. One of the major drawbacks in the regional modeling
approach is the artificial lateral boundaries and the lack of feedback between the RCM (regionally refined
domain) and the driving GCM (rest of the globe), which may influence the simulated model responses within
the finer domain. Moreover, the RCM's skill heavily depends on the quality of the boundary forcing (provided
by the driving GCM) in the representation of large-scale climate processes. Likewise, it should also be noted
that RCM simulations are very time consuming and scientifically challenging and require experienced mode-
lers to ensure that the GCM signals can be faithfully downscaled. Given these limitations, the number of RCM
ensemble members and the size of the regional model domain are generally constrained.

In this study, future climate projections over the continental U.S. are based on the dynamical refinement of
the resolution of GCMs climate projections that are the basis of the Fifth Assessment Report (AR5) of
Intergovernmental Panel on Climate Change [2013]. An ensemble of high-resolution regional climate change
experiments is generated by dynamically downscaling GCMs using a one-way nesting approach. With this
approach, a high-resolution regional climate model is forced at its lateral and lower boundaries every 6 h
using three-dimensional atmospheric and two-dimensional surface fields from low-resolution GCMs, while
no feedback is permitted from the regional climate model to the driving GCMs. Many modeling efforts in
the past have used dynamical downscaling for regional climate projections over the U.S. For instance,
Diffenbaugh et al. [2005] employed a single RCM to downscale a single GCM over the continental U.S. at
25 km horizontal grid spacing. Similarly, using the identical domain, horizontal grid spacing, and model con-
figuration, Diffenbaugh and Ashfaq [2010] used a single RCM to downscale multiple integrations of a single
GCM and generated a centennial-scale five-member ensemble of climate projections over the continental
U.S. Additionally, in a multiinstitutional effort, the North American Regional Climate Change Program
(NARCCAP) used a combination of six RCMs and four GCMs over a domain covering North America at
50 km horizontal grid spacing and generated a 12-member multi-RCM ensemble of climate projections
[Mearns et al., 2009]. Likewise, many other studies used high-resolution subregional RCM domains to provide
high-resolution short time-slice projections of the hydroclimate over various parts of the continental U.S.
[e.g., Duffy et al., 2006; Fan et al., 2014; Gula and Peltier, 2012; Salathe et al., 2010]. However, in terms of the
number of downscaled GCMs, horizontal grid spacing, and the length of simulations, the regional climate
modeling in this study is perhaps one of the largest dynamical downscaling efforts over the continental
U.S. to date. Overall, these experiments have utilized over 10 million computational hours on the Titan super-
computer maintained by the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory and
have generated over 100 terabytes of subdaily three-dimensional hydrometeorological projections.

This study mainly focuses on the details of the dynamical downscaling, the modeling skill of the RCM in the
historic period and future projections of the mean annual and extreme daily precipitation and surface tem-
perature at the subregional scale over the continental U.S. and should serve as a reference for future research
efforts using this data.

2. Methods
2.1. Regional Climate Modeling

We employ Abdus Salam International Centre for Theoretical Physics Regional Climate Model version 4
(RegCM4) to dynamically downscale multiple GCMs from the fifth phase of Coupled Model Intercomparison
Project (CMIP5) archive over the continental U.S. Details of the RegCM4 nested climate model are described
in Giorgi et al. [2012]. RegCM4 is a hydrostatic, sigma coordinate, primitive equation, and limited-area model.
In our configuration, RegCM4 uses the hydrostatic dynamical core from Fifth Generation Mesoscale Model
(MM5) [Grell et al., 1994], the radiation package from Community Climate Model version 3 (CCM3) [Kiehl et al.,
1998], theCommunity LandModel (CLM) version 3.5 [Tawfik and Steiner, 2011], and theHoltslagboundary layer
package [Holtslag et al., 1990]. Precipitation processes are parameterized using the Subgrid Explicit Moisture
Scheme (SUBEX) scheme of Pal et al. [2000] and the cumulus convection parameterization of Grell [1993] with
the closure assumption of Fritsch and Chappell [1980]. The earlier version of thismodel (RegCM3), whichmainly
differs fromthecurrentversion in theparameterizationsof landsurfaceprocesses [Pal etal., 2007], hasbeensuc-
cessfully used anumber of times for dynamically downscalingGCMsover theU.S. [e.g.,Ashfaq et al., 2010, 2013;
Diffenbaugh and Ashfaq, 2010; Diffenbaugh et al., 2005, 2011;Mearns et al., 2009].
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In this study, the RegCM4 grid is centered at 39.00°N and 100.00°W and consists of 202 points in the latitude
direction and 306 points in the longitude direction. Grid points are separated by 18 km horizontally and have
18 levels in the vertical. The Lambert Conformal projection places the grid corners at 50.17°N, 138.86°W
(northwest), 50.10°N, 60.91°W (northeast), 19.58°N, 125.44°W (southwest), and 19.53°N, 74.40°W (southeast).
In total, 11 GCMs from Coupled Models Intercomparison Project Phase 5 (CMIP5) archives are downscaled to
generate 11 sets of historical and future realizations under the Representative Concentration Pathway 8.5
(RCP 8.5). RCP 8.5 exhibits the highest levels of forcing and global warming at the end of the 21st century,
with a radiative forcing reaching ~8.5Wm�2 and greenhouse gas concentrations exceeding 1370 ppm
CO2 equivalent [Moss et al., 2010]. In each set of RegCM4 simulations, the historical baseline period consists
of 41 years from 1965 to 2005 and the projected future period consists of 41 years from 2010 to 2050. The first
year of RegCM4 simulation in both the baseline and future periods is used for model spin up and has been
discarded in the analysis.

Each RegCM4 ensemblemember uses the same parameterization options, with only large-scale input varying
between the RegCM4 ensemble members. Details about the modeling institute, GCM resolution and future
forcing are provided in Table 1. The choice of CMIP5 GCMs is mainly based on the availability of subdaily
three-dimensional atmospheric data needed for dynamical downscaling. While there are over 50 GCMs that
contributed to CMIP5, less than one third of them archive three-dimensional atmospheric fields at the sub-
daily time scale, which is necessary for dynamical downscaling. Also, though a few GCMs had more than
one ensemble member data available for downscaling, we only used one ensemble simulation per GCM
for consistency. We focus on RCP 8.5 since it is closest to the current observed trajectory. Given that the dif-
ference among various RCPs becomes significant only after 2030 [Peters et al., 2013], the choice of RCP is
potentially not a dominating factor in the near-term climate projection.

2.2. Observational Data

For baseline comparisons, observational monthly and daily temperature and precipitation data sets are taken
from the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) at 4 km horizontal resolu-
tion [Daly et al., 2008] and Oak Ridge National Laboratory Daymet at 1 km horizontal grid resolution
[Thornton et al., 2014]. While PRISM data are available at amonthly time scale for the entire length of the base-
line period, daily PRISM and Daymet data sets are only available after 1980. Therefore, the estimation of all the
simulation errors is only for the time period (1981–2005) for which both daily and monthly gridded observa-
tional data are available.

2.3. Analysis

We perform analysis at the annual time scale for the characterization of the mean climate and at the daily
time scale for the characterization of climate extremes. Results are also presented both at the continental
scale and the regional scale. All continental-scale results are presented as the mean of ensemble members.
For regional-scale comparisons, we divide the continental U.S. into nine climate regions using the

Table 1. Summary of the 11 Dynamically Downscaled CMIP5 GCMs

No. GCM Name
Spatial Resolution
(latitude/longitude)

Ensemble
Number Institute Name

1 ACCESS1-0 1.24°/1.88° r1i1p1 Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of
Meteorology (BOM), Australia

2 BCC-CSM1-1 2.81°/2.81° r1i1p1 Beijing Climate Center, China Meteorological Administration
3 CCSM4 0.94°/1.25° r6i1p1 National Center for Atmospheric Research
4 CMCC-CM 0.75°/0.75° r1i1p1 Centro Euro-Mediterraneo per I Cambiamenti Climatici
5 FGOALS-g2 3.00°/2.81° r1i1p1 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences and CESS,

Tsinghua University
6 GFDL-ESM2M 2.00°/2.50° r1i1p1 Geophysical Fluid Dynamics Laboratory
7 MIROC5 1.41°/1.41° r1i1p1 Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for

Environmental Studies, and Japan Agency for Marine-Earth Science and Technology
8 MPI-ESM-MR 1.88°/1.88° r1i1p1 Max Planck Institute for Meteorology (MPI-M)
9 MRI-CGCM3 1.13°/1.13° r1i1p1 Meteorological Research Institute
10 NorESM1-M 1.88°/2.50° r1i1p1 Norwegian Climate Centre
11 IPSL-CM5A-LR 1.88°/3.75° r1i1p1 Institut Pierre-Simon Laplace
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classification defined by the National Centers for Environmental Information (NCEI) [Karl and Koss, 1984].
Commonly used terminologies (e.g., northeast, Great Lakes, and Great Plains) are used to describe the results
over different regions. NCEI climate region names are only used while describing the regionally averaged
results.

All future projections are reported as change from 1981–2005 baseline to 2011–2050 future periods.
Transient climate projections are based on the differences of individual years both in the baseline and future
periods from the reference period (1981–2005). We present these analyses for both observations (Daymet
and PRISM) and simulations (entire length of baseline and future simulations). We also perform trend analysis
on the annual anomalies using the rank based Mann-Kendall test [Kendall, 1975; Mann, 1945] to quantify the
significance of temporal changes in the baseline (for both observations and simulations) and future periods
(simulations). Trends are calculated for the overlapping periods (1981–2005) in the baseline and for the entire
length of the projections period in the future.

For the calculation of precipitation extremes, we first define a wet day when the daily amount of precipitation
is at least 1mm/d. We then use the climatological value of the 95th percentile of wet day precipitation, cal-
culated as an average of the 95th percentile during each year of the comparison period, as a threshold for
precipitation extremes. Using identical methodology, snow extremes are calculated for each year for the
snow days that occur during 1 October to 31 March. Similarly, for temperature extremes, we use the climato-
logical value of 95th (5th) percentile of maximum (minimum) daily temperature, calculated as an average of
the 95th (5th) percentile during each year of the comparison period, as a threshold for hot (cold) extremes.
While the use of 1mm/d threshold for the selection of wet days is not uncommon, we note that it may sub-
stantially reduce number of wet days over relatively drier regions in the western U.S. and impact the results
for future changes in precipitation extremes over those regions.

In order to quantify changes in precipitation seasonality, we use the methodology described in Feng et al.
[2013]. For each hydrological year (October to September), we calculate the seasonality of precipitation as
a multiplicative product of relative entropy, which quantifies the extent of precipitation concentration in
the wet season, and annual mean precipitation normalized by the domain maximum over the length of
the analyses period. Further changes in the timing and duration are calculated using the first and second
moments of annual mean rainfall, respectively. Timing or the first moment is the centroid of the rainfall dis-
tribution when 50% of the annual precipitation is reached in a hydrological year. Duration or the second
moment is the temporal deviation from the centroid of the rainfall and is useful to quantify the changes in
the length of the wet season. In this study, we calculate these quantities for each hydrological year in the
baseline and future periods and average the results over the respective lengths of simulations. In order for
the results to be comparable across different grid points (continental U.S.), data sets (observations, model
simulations), and simulation periods (baseline, future), we normalize the results using the maximum rainfall
value found over all data sets and simulation periods. Further details of the methodology and mathematical
expressions can be referred to Feng et al. [2013].

We use several measures to determine the robustness or uncertainty of the simulated results across the
ensemble members. First, all spatial maps are stippled over the grid points where seven or more GCMs agree
on the threshold (only in the case of temperature) or the sign of the projected changes. Second, we perform
trend analysis to test the significance and consistency of temporal changes in the individual ensemble
members and the ensemble mean. Third, we use box and whisker plots to describe the spread among the
ensemble members in their simulated future changes.

3. Results and Discussion
3.1. Representativeness of the Selected GCMs

In order to investigate the representativeness of the selectedCMIP5GCMs (11 in total; hereafter GCM-SUB) that
have been downscaled in this study, we compare their ensemblemean annual precipitation and temperature
projections (for RCP 8.5) with a larger set of CMIP5 GCM projections (37 in total; hereafter GCM-ALL). Here the
selectionof 37GCMs inGCM-ALL ismainly basedon the availability of both temperature andprecipitation data
at the timeof analysis. Thepercentage change in annual precipitation, percent of GCMswithpositive precipita-
tion change, and the projected change in annual temperature are shown in Figure 1.
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With the exception of the southwest region, GCM-ALL simulates a robust increase in precipitation in the
future period that gradually intensifies in magnitude from the south to the north (Figure 1a). GCM-SUB simu-
lates a similar precipitation change with the exception of the northwest region where the response is gener-
ally muted in contrast to the increase in GCM-ALL (Figure 1b). The differences over the northwest are mainly
due to the fact that only 30 to 60% of the GCMs in GCM-SUB simulate an increase in precipitation over the
northwest compared to 50 to 80% of GCMs in GCM-ALL (Figures 1c and 1d). Temperature increases in both
the ensembles exhibit a similar spatial pattern with generally mild increases along the coasts in the south and
west (up to 1.5°C) and stronger increases over the snow dominant regions in the west and north (up to 2°C).
However, GCM-ALL exhibits relatively stronger increases of greater than 2°C in the north over parts of Canada

Figure 1. Comparison of multimodel ensemble projectionsmade by (a, c, and e) 37 CMIP5 GCMs (GCM-ALL) and the selected (b, d, and f) 11 CMIP5 GCMs (GCM-SUB).
The percentage change in annual precipitation is shown in Figures 1a and 1b. The percent of GCMs with positive precipitation change is summarized in Figures 1c
and 1d. The projected change in annual temperature (°C) is shown in Figures 1e and 1f. Changes are based on the difference of 40 years average in the future period
(2011–2050) from 40 years average in the baseline period (1966–2005).
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and northern Great Plains (Figures 1e
and 1f). Slightly lower magnitudes of
warming (up to ~0.3°) in GCM-SUB
can be partly attributed to the rela-
tively stronger magnitudes of preci-
pitation increases over those regions
compared to GCM-ALL (Figure 1).
Nonetheless, GCM-SUB simulates a
response generally consistent with
GCM-ALL and does not represent
the outliers in the CMIP5 data.

3.2. Added Value by RCMs

To comprehensively evaluate model-
ing skills of the downscaled RegCM4
ensemble (hereafter RCM-SUB)
against the observations and driving
GCMs (GCM-SUB ), we use Taylor dia-

grams [Taylor, 2001] that summarize the performance of eight variables, including mean precipitation, mean
temperature (daily maximum, minimum, and average), precipitation extremes (average annual 95% percen-
tile), temperature extremes (average annual 95% and 5% percentiles), and the number of wet days, for each
of the nine NCEI climate regions (Figure 2). Comparisons are based on the normalized statistics from 1981 to
2005 where both daily PRISM and Daymet data sets are available. We evaluate the modeling skills in separate
Taylor diagrams, one each for GCM-SUB and RCM-SUB with PRISM and one each for GCM-SUB and RCM-SUB
with Daymet. Comparisons are made first at a 1° resolution (Figure 3) for the large-scale patterns and at the
RegCM4 grid resolution (18 km) for the fine-scale details (Figure 4). The Taylor diagram quantitatively com-
pares the pattern correlation, the ratio of variance (ROV), and the root-mean-square difference (RMSD)
between the simulation (GCM or RCM) and the observation (Daymet or PRISM). The radial coordinates repre-
sent the ROV and RMSD: ROV as the radial distance from the reference arc (labeled with a dotted arc) and
RMSD as the radial distance from the point of reference (labeled Daymet or PRISM). Similarly, the angular
coordinate represents the pattern correlation, which measures the extent to which maxima and minima in
the reference data (i.e., observations) and the test data (i.e., simulations) occur at a similar location.

Both at large and fine scales, GCM-SUB exhibits large errors in the ROV and RMSD for temperature and pre-
cipitation extremes over most of the regions (Figures 3 and 4). Similarly, pattern correlation for hot daily sur-
face temperature extremes and number of wet days is below 0.6 over most regions and is in between 0.5 and
0.9 on the average across all variables (Figures 3 and 4). In both large- and fine-scale comparisons, the high-
resolution downscaled RCM-SUB exhibits an improvement in the characteristics of both mean annual and
extreme daily temperature and precipitation over all regions. For instance, the pattern correlation is in
between 0.6 and 0.95 on average across all variables in RCM-SUB (Figures 3 and 4). Similarly, errors in ROV
and RMSD for extreme daily surface temperature and extreme daily precipitation are relatively lower than
those in GCM-SUB. Overall, we find an improvement in RCM-SUB over GCM-SUB in at least two out of three
(ROV, RMSD, and pattern correlation) characteristics for 90% of the comparisons. These results highlight the
added value of the high-resolution RCM-SUB, particularly in the simulation of both large-scale patterns and
fine-scale details of extreme temperature and precipitation thresholds. Such improvements in RCM simula-
tions over the driving GCMs are well known and have been reported in previous RCM studies over North
America [e.g., Leung and Qian, 2003; Liang et al., 2008; Mearns et al., 2012; Plummer et al., 2006; Walker and
Diffenbaugh, 2009].

3.3. Regional Climate Projections

Figure 5 shows the projected changes in the mean annual temperature and precipitation, hot, cold and wet
extremes, and number of wet days. The overall spatial patterns of simulated changes in the mean annual
temperature in RCM-SUB are generally consistent with the original projections from GCM-SUB (Figures S1
in the supporting information and 5). RCM-SUB simulates pronounced warming (up to 1.7°C) over the higher
elevations in the western U.S. and parts of the northern U.S. and milder temperature increases over the

Figure 2. National Centers for Environmental Information (NCEI) climate
regions.
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southeastern U.S. (up to 1.1°C, Figure 5a). The warming magnitudes over the southeast region are relatively
weaker in RCM-SUB compared to GCM-SUB (Figures S1 and S2). While we did not analytically quantify the
physical mechanisms for these differences between the driving GCM-SUB and the downscaled RCM-SUB, it
should be noted that GCM-SUB exhibits the largest errors in the distribution of annual precipitation over this
region (Figures 3 and 4), which may partly contribute to the stronger future surface temperature response.
Nonetheless, the temperature increase in RCM-SUB is associated with strong increases in extreme hot days
over the western U.S., along the east coast and parts of southeastern U.S., as well as decreases in extreme cold
days over the south-southwestern and northeastern U.S. (Figures 5b and 5c). Most of the strong changes in
extreme hot and cold days in RCM-SUB are simulated by at least 60% of the models (represented by the
stippled regions, Figures 5b and 5c). Moreover, in many of the regions where both extreme hot and cold days
exhibit strong changes in at least 60% of the ensemblemembers, the warming is expected to exceed 2°C with
respect to the 1981–2005 average in the last decade (2040s) of projected future period, shown as the stippled
regions in Figure 5a. However, it should be noted that the magnitude of decrease in the number of cold
extremes is almost 3 times lower than that of the increase in the number of hot extremes, indicating that
changes in the hot extremes are a major driver of the increases in mean temperatures, which is consistent
with earlier findings [e.g., Meehl et al., 2009; Melillo et al., 2014].

In comparison to GCM-SUB, precipitation changes are stronger and understandably more spatially variable in
RCM-SUB, particularly over west-northwestern regions where the more accurately resolved higher elevations

Figure 3. Comparison of (b, d) the RegCM4 ensemble (RCM) and (a, c) the driving GCMs ensemble (GCM-SUB) with Daymet
(Figures 3a and 3b) and PRISM (Figures 3c and 3d) observations through Taylor diagrams. Comparison is based on the
statistics derived from 1981 to 2005 period when gridded daily temperature and precipitation are available. Both the
observations and the simulations (GCM-SUB, RCM) are regridded at 1° resolution for evaluation.
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in the RegCM4 ensemble are projected to experience increase in precipitation (up to 10%, Figures S1 and
5d). Other notable differences in the precipitation response occur over parts of the northeast and south
where RCM-SUB simulates a decrease of up to 6%, which is opposite in sign to the precipitation changes
in GCM-SUB (Figures S1 and 5d). Here we should point out that RCM-SUB is least skillful over the northeast
in the distribution of annual precipitation (Figures 3 and 4), which may partly influence simulated future pre-
cipitation response and differences with the driving GCM-SUB (Figure 5d). Regardless of the mean annual
precipitation response in RCM-SUB, precipitation is expected to occur less frequently but more intensely
almost everywhere (Figures 5e and 5f). Interestingly, even regions with the strongest decrease in the mean
annual precipitation mostly exhibit an increase in the precipitation extremes (e.g., southwest; Figure 5).
Similarly, regions with the largest increase in precipitation extremes (>10% per decade) coincide with
regions that have the largest increases in mean annual precipitation (e.g., higher elevations, Great Lakes;
Figure 5). As is the case with temperature changes, regions where over 60% of the models agree in mean
annual precipitation changes (stippled areas) also exhibit stronger changes in precipitation characteristics,
namely, magnitude (Figure 5d), occurrence (Figure 5e), and intensity (Figure 5f).

Changes in future precipitation are further examined by variations in the seasonal distribution and intersea-
sonal variability of precipitation. Using the seasonality analyses developed by Feng et al. [2013], we illustrate
the seasonality, entropy, timing of 50% annual precipitation and duration of the wet season for both obser-
vations and simulations in Figure 6, and their projected changes in Figure 7. We note that seasonality can be
large if entropy and/or annual magnitudes of precipitation are large as seen over the west coast, northwest,
south, and parts of Great Plains (Figure 6a). Higher values of entropy suggest little to no rain outside of the

Figure 4. Same as Taylor diagram comparison in Figure 3 but with observations, GCM and RCM simulated regridded at the
RegCM4 resolution (~18 km) for evaluation.
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wet season as in California, southwest, and Great Plains (Figure 6b). Regions where annual precipitation mag-
nitudes are relatively moderate but where precipitation is well distributed across the year (high number of
precipitation days) [Walker and Diffenbaugh, 2009] exhibit low seasonality values such as parts of the north-
east and Great Lakes region. Other hatched regions exhibit low seasonality solely due to the lack of precipita-
tion (Figure 6a) and the results for seasonality analysis should be ignored over those regions. Timing reflects
the wettest time during the hydrological year, starting in October in this analysis. For instance, most of the
precipitation in the western U.S. (Great Plains) is during the winter (spring and summer) season(s), which is
reflected in the relatively early (late) timing for 50% annual precipitation. Alternatively, the midyear timing
(~180 days) for the southeast highlights the fact that precipitation is relatively uniformly distributed during
the entire year (Figure 6c). Similarly, the duration of the wet season is comparatively short over California
and parts of Great Plains (Figure 6d), which can partly explain their higher vulnerability to droughts. Most
of the above mentioned subannual characteristics of precipitation are reasonably simulated by RCM-SUB
except for a few exceptions such as the east coast (southwest) where precipitation is relatively less (more)
distributed across the months (Figure 6). Another exception exists along the parts of Gulf Coast where wet
precipitation biases drive stronger than observed seasonality in RCM-SUB. Overall, these biases in the season-
ality and entropy lead to errors in the timing for 50% annual precipitation and overall length of the wet sea-
son. Future projections in precipitation characteristics suggest important changes in the distribution of
precipitation at monthly to seasonal time scales. With the exception of the northern Great Plains, Upper
Midwest, and Florida, there is a general shrinking of wet seasons across the U.S. (Figure 7c), regardless of
the sign of change in the magnitudes of annual precipitation (Figure 7d). This shrinking of wet seasons is
manifested by an increase in the seasonality and the entropy (Figures 7a and 7b) and a decrease in the num-
ber of precipitation days (Figures 5e). In parts of California and the northwest, shorter rainy seasons are
expected to shift the timing of 50% annual precipitation occurrence date up to 5 days earlier. On the other
hand, in the southern Great Plains and parts of the southeast, a precipitation shift toward the later half of
the hydrological year (not shown) delays the timing of 50% annual precipitation occurrence date by up to

Figure 5. Projected change by the RegCM4 ensemble, from 1981–2005 baseline to 2011–2050 future periods: (a) annual
mean temperature (°C), (b) number of extreme hot days (days per year), (c) number of extreme cold days (days per year),
(d) change of annual precipitation (%), (e) number of wet days (% per year), and (f) number of extreme precipitation days
(days per year). Stippling in Figures 5d–5f represents grid points where seven or more models agree on the sign of the
change. Stippling in Figure 5a represents grid points where seven or more models simulate at least 2°C warming in the last
future decade (2041–2050). Stippling in Figure 5b (Figure 5c) represents grid points where seven or more models simulate
at least 10 (5) more (less) extreme hot (cold) days per year in 2011–2050.
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5 days (Figure 7d). Delays in the timing over parts of the northeast and Florida are driven more by a decrease
in the annual precipitation (Figures 5d and 7d).

3.4. Uncertainty Across Ensemble Members

In order to understand regional-scale uncertainty in the projected hydroclimate changes across RCM-SUB
members, we use box and whisker plots for each of the nine NCEI climate regions (Figure 8). For each region
and each member of RCM-SUB, we calculate the mean and extreme values at each grid point integrated over
the two time periods and the results are presented as spatial averages of the projected changes using all the
grid points within that region. We calculate the projected change as the difference between the 40 year mean
of the future period (2011–2050) and the 25 year mean of the baseline (1981–2005) period.

In the case of temperature, the southeast exhibits the smallest increases and spread among the ensemble
members with amedian increase of<1.2°C and range of<0.4°C (Figure 8a). Relatively small increases are also

Figure 6. (a, c, e, and g) Precipitation characteristics in observations and (b, d, f, and h) RegCM ensemble. Seasonality
(Figures 6a and 6b), relative entropy (Figures 6c and 6d), timing (Figures 6e and 6f), and duration (Figures 6g and 6h).
Observations are based on the average of PRISM and Daymet. Hatching represents the regions where annual mean pre-
cipitation is <1mm/day.
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projected over the south and Ohio Valley with a median warming of <1.4°C. On the other hand, the south-
west and west exhibit the strongest increase in temperature with more than half of the ensemble members
showing warming of>1.6°C. Regions in the northern U.S. (Northwest, northern Rockies, and Upper Midwest)
exhibit the largest spread among the models (Figure 8a), which partly explains why many of these regions do
not show high model agreement in reaching the 2°C warming in 2040s despite having a relatively higher
magnitude of mean warming (Figure 5a, nonstippled regions). Regions with the strongest median warming
(southwest and west;>1.7°C) are also the regions where the median increase in extreme hot days is the high-
est (>18 days), though the southwest also exhibits one of the largest spreads among the models.
Interestingly, the southeast exhibits the least mean warming (Figure 8a) but the third highest median
increase in extreme hot days (Figure 8b), which is in part due to its low summer temperature variance
[Diffenbaugh and Ashfaq, 2010]. On the other hand, the Ohio Valley and the Upper Midwest exhibit the mini-
mum increases in extreme hot days, which is consistent with the observed trends [Portmann et al., 2009]. The
projected decreases in the number of extreme cold days are approximately less than half of the projected
increases in the number of extreme hot days, which is consistent with the observed changes in the hot
and cold extremes [Meehl et al., 2009]. Some of the largest median changes in cold extremes occur over
the southwest and west (�7 days or more), consistent with strong increases in mean temperatures and num-
ber of extreme hot days, and some of the mildest median changes occur over the northern Rockies (�5 days),
consistent with relatively strong increases in precipitation (Figure 5d). Additionally, the interensemble spread
for extreme cold days is relatively lower than that for extreme hot days (Figure 8).

As for precipitation, the strongest ensemble median (>3%) and robust increase in precipitation occur in the
Upper Midwest and northern Rockies where almost all the ensemble members simulate an increase in pre-
cipitation (Figure 8d). On the other hand, the west and southwest are the only two regions where more than
half of the ensemble members exhibit a decrease in precipitation while the southeast exhibits the smallest
projected changes in precipitation with the largest number (3) of outliers. The largest spread among the

Figure 7. Future changes (2011–2050 minus 1981–2005) in RegCM4 ensemble for (a) magnitude of seasonality, (b) relative
entropy, (c) duration of wet season, and (d) timing of 50% annual precipitation. Hatching represents the regions where
annual mean precipitation is <1mm/day.
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Figure 8. Box and whisker plots showing the spread of projected changes across RegCM4 ensemblemembers in each NCEI
region for (a) average annual temperatures (°C), (b) number of extreme hot days (days per year), (c) number of extreme cold
days (days per year), (d) annual precipitation (%), (e) precipitation extremes (%), and (f) number of wet days (%). Changes
are based on the differences of 2011–2050 future period from 1981 to 2005 baseline period. The range of the RCM-SUB is
shown, where the center line in the box is the 50th percentile of the ensemble, the bottom and top boundaries of the box
represent the 25th and 75th percentiles, respectively, and the crosses show the outliers which fall approximately outside
the 99th percentile of the RCM ensemble.
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ensemble members occurs in the west, Ohio Valley, and northwest with differences between the minimum
and the maximum projected precipitation changes exceeding 12% (Figure 8d). While the mean precipitation
response is heterogeneous across the U.S., the projected changes in the number of precipitation extremes is
robust, as almost all the models show an increase in days where the daily precipitation magnitude exceeds
the climatological value of the 95th percentile of the baseline precipitation (Figure 8e). The characteristics
of the projected change in the number of precipitation extremes across the regions are quite consistent with
those of the percent change in mean annual precipitation. For instance, the northwest, west, and Ohio Valley
show a larger range of projected changes in both the mean annual precipitation and precipitation extremes
across the ensemble members (Figures 8d and 8e). Similarly, the Upper Midwest and south are among the
regions with the highest projected changes in both cases. A predominant increase in the number of precipi-
tation extremes across the U.S. is consistent with the projected changes in number of wet days that show a
decline in almost all regions. The strongest median decline in wet days (�5 days/year, Figure 8f) occurs over
the west and southwest, both of which show amedian decrease inmean precipitation and a relatively smaller
increase in number of precipitation extremes days (~1 every 2 years).

3.5. Changes in Snow Hydrology

We also examine the projected snow hydrology simulated by the land surface component of RegCM4. The
magnitudes of cold season average snow depth, snow days, and their future changes, along with the changes
in number of extreme snow events, and the timing of strongest warming are shown in Figure 9. Strongest
warming is calculated as the maximummonthly departure from baseline temperatures across all the months.
Historically, a substantial amount of cold season (October to March) precipitation falls in the form of snow
across the U.S. (Figures 9a and 9b) with maxima over the Great Lakes region and the higher elevations in
the western U.S. For the comparison of simulated snow with the station observation, we refer readers to
Naz et al. [2016] that describes hydrologic model's results at 4 km over the conterminous U.S. when it is driven
with the RCM-SUB data. In future projections, with a few exceptions over the north-central region, over 60%
of the members of RCM-SUB simulate decreases in both the amount and number of snow days over the U.S.
(represented by stippling). Decreases in snow days are strongest (>20%) over regions where major precipita-
tion falls as rain, whereas decreases in snow amount are strongest (up to 15%) over higher elevations in the
west where most of the precipitation falls as snow, particularly in the Sierra Nevada and Cascade Mountains
(Figures 9c and 9d). Despite these projected changes in snow amount and days, many higher elevations in
the west, northern Great Plains, Great Lakes, and Ohio Valley are expected to see an increase in snow
extremes (up to 1 event per year) (Figure 9e). The possibility of an increase in total snow amount or snow
extremes in future climates has also been reported in earlier studies [e.g., Kapnick and Delworth, 2013;
O'Gorman, 2014], generally consistent with moister atmospheric conditions and relatively milder decreases
in cold extremes in the future period (Figure 5c). Overall, these changes in snow hydrology have a profound
impact on the timing of the strongest surface warming (Figure 9f) and perhaps on the magnitudes of pro-
jected surface warming. Higher elevations in the western U.S., where snow accumulates during the cold sea-
son (autumn/winter) and melts in the warm season (spring/summer), exhibit the strongest warming in the
spring and summer months, consistent with the changes in snow amount over those regions (Figures 9c
and 9d). A decrease in snow in the cold season reduces the amount of snow that is available for melt in
the warm season, which advances the timing of a snow free land surface and therefore influences surface
temperatures through changes in surface albedo. On the other hand, the Midwest, Ohio Valley, and northeast
exhibit the strongest warming in the cold season where presently a major part of the cold season precipita-
tion falls as snow but does not accumulate during the season and instead melts over several days after each
snowfall episode. Therefore, any future warming that is related to changes in snow albedo occurs during the
cold season as the overall amount of snow decreases (Figures 9c and 9d). These important relationships
between changes in snow and surface warming projections in future climates across the U.S. should be noted
while assessing the differences in magnitudes of warming between CMIP5 GCMs and a high-resolution
RegCM4 ensemble.

3.6. Clausius-Clapeyron Scaling

We summarize the relationship between the increase inmean annual temperature and percent change in pre-
cipitation fromwet extremes in Figure 10. The Clausius-Clapeyron relation suggests a 7% increase in themoist-
ure holding capacity of the atmosphere per degree centigrade rise in temperature [Trenberth et al., 2003]. This
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means that in the absence of other dynamical forcing and given that almost all of the atmospheric moisture
is expected to be converted to precipitation during an extreme event, extreme precipitation should increase
at a comparable rate (7% per °C increase). Studies have shown that scaling of extreme precipitation magni-
tudes also depends on the time scale over which event is being measured (e.g., daily and hourly), storm type
(e.g., large-scale versus convective), location (e.g., orographic effects on moisture transport), resulting in
increases that vary from< 7% to 14% in the observations [e.g., Berg et al., 2013; Haerter and Berg, 2009;
Lenderink and Van Meijgaard, 2008; Singleton and Toumi, 2013]. In our analysis, both cold season precipita-
tion extremes (snow) driven by large-scale weather systems and hot season precipitation extremes driven

Figure 9. (a) Average snow amount (mm/day) and (b) number of snow days (days per cold season) in the cold season
(October to March) of the baseline period (1981–2005). Projected changes in snow hydrology: (c) snow amount (%), (d)
number of snow days (%), and (e) number of extreme snow events (days per cold season). (f) Number of models at each
grid point that exhibit strongest future warming either in the months that experience snow (blue) or in the months that
experience melting of accumulated snow (red). Strongest warming is calculated as maximum monthly departure from
baseline temperatures across all the months.
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by fine-scale convection are showing
an increase across the U.S. along with
a rise in temperature (Figures 5 and
9). At a regional scale, we find a strong
relationship (R=0.79) between the
increase in temperature and percent
increase in the amount of daily precipi-
tation falling as extreme with a 7.4%
increase in the percent of precipitation
contributed by daily extremes per °C
rise in temperature. While we expect
this relationship to vary between 7
and 14% at subdaily and grid-scale
levels, as evident in observations
based studies, it nevertheless depicts
a general consistency with previous
findings and provides a first-order esti-
mate of how changes in regional scale
extremes may scale with increasing
temperatures across the U.S. in the
coming decades given that regional-
scale warming remains below 2°C for
most of the projection period.

3.7. Transient Climate Change

We present the time series of anomalies of temperature and precipitation characteristics with reference to
the 1981–2005 for which gridded daily observations are available (Figures 11 and 12). Anomalies are
calculated at each grid point in the individual baseline and future years by subtracting the 25 year average
of the reference period and the results are presented as spatial averages of the projected anomalies using
all the grid points within a NCEI region. The grey lines in Figures 11 and 12 represent individual ensemble
members, the thick black and red lines represent the ensemble mean in the baseline and future periods,
respectively, and the green and blue lines represent the PRISM and Daymet observations, respectively. We
extend the observed anomalies to 2012 to provide a reference for the future trajectory of the
projected trends.

All climate regions are projected to reach 2°C warming by mid-21st century with more accelerated pace of
warming over the southwest, west, and northwest and a slower pace of warming over the south and
southeast (Figure 11a). It is important to note that the historical trends in the baseline period and the pro-
jected pace of warming in RCM-SUB follows the observed warming trends with the exception of the north-
east where observed warming trends are apparently stronger than the simulated trends, which could be in
part due to relatively lower skill in RCM-SUB over that region (Figures 3 and 4). Progressive warming trends
in the mean annual temperatures are associated with consistent decreasing trends in the number of cold
extremes and increasing trends in the number of hot extremes (Figures 11b and 11c). Many of the regions,
including the southwest, west, and southeast are already showing an increase in the occurrence of hot
extremes in the observations. Similarly, observations exhibit strong decreasing trends in the number of
cold extremes over the northwest and northeast. Our simulations suggest an intensification of such trends
in the coming decades. It should be noted that both in the observations and simulations, year-to-year var-
iations in the number of hot extremes is much stronger than those in the number of cold extremes, which
is also consistent with the relatively stronger interensemble spread in the number of hot extremes com-
pared to that in the change of cold extreme days (Figure 8). However, it appears that RCM-SUB tends to
overestimate hot extremes in the first few years (more visible in the western half of the U.S.) of the future
period before equilibrating toward a trajectory of lower magnitude. Similar but less pronounced behavior
also exists in the baseline period (Figure 11c). This can either be due to an undocumented fact that RCMs
tend to take much longer than expected to equilibrate when simulating hot extremes or due to a bias
internal to RegCM4.

Figure 10. Relationship between the increase in the surface temperature
and the increase in the percent of precipitation falling as extremes. Each
dot represents 10 years spatially averaged over one of the nine NCEI climate
regions. Colors represent one of the four decades in the future period.
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As suggested by the long-term mean
changes in the annual mean precipi-
tation in Figure 5d, three northern
climate regions (northwest, Upper
Midwest, and northern Rockies) show
progressive positive precipitation
trends in the futureperiodandonecli-
mate region (southwest) shows a pro-
gressive negative trend (Figure 12a).
The interannual variability in the
observed anomalies in the baseline
period generally remains within the
RCM-SUB spread with the west exhi-
biting the largest variability in both
the observations and the simulations
(Figure 12a). Observations also show
a prevailing negative trend over the
southwest region; however, the mag-
nitude of the trend is much stronger
in the observations than that in the
simulations. Regardless of the trends
in the mean annual precipitation,
the number of daily precipitation
extremes shows a positive trend over
all regions in the projections
(Figure 12b). Many regions show an
increase of up to 20% in the number
of daily precipitation extremes by
the mid-21st century, with the south-
east and northwest exhibiting some
of the strongest trends. It is important
to note that over many regions,
including the northeast, southwest,
southeast, and northern Rockies,
PRISM observations show a strong
increasing trend in the occurrence of
daily precipitation extremes during
the first decade of the 21st century,
but with the exception of the north-
east, no such trends are observed in
the Daymet observations. We can
attribute this difference in trends to
the fact that PRISM precipitation
observations have made use of radar
data in the recent years, while
Daymet solely relies on ground obser-
vations. Similar increasing trends to
PRISM were also reported in the third
National Climate Assessment Report
[Melillo et al., 2014]. In light of the
apparent discrepancy between the

two observational data sets, the projected trajectory of the simulated trends in the number of daily precipita-
tion extremes are either consistent or milder than the current observed trends over most of the regions
(Figure 12b). Some of the differences in the trajectories of changes in daily precipitation extremes in the

Figure 11. Annual anomalies with respect to 1981–2005 reference period in
(a) annual surface temperatures (°C), (b) number of extreme cold days, and (c)
number of extreme hot days. Anomalies are calculated at each grid point in
the individual baseline and the future years by subtracting the 25 year
average of the reference period and the results are presented as spatial
averages of the projected anomalies using all the grid points within a NCEI
region. The grey lines represent individual members in RCM-SUB, the black
and red lines represent the ensemble mean in the baseline and future peri-
ods, respectively, and the green and blue lines represent anomalies in the
PRISM and the Daymet observations, respectively. We extend the observed
anomalies to 2012 to provide a reference for the future trajectory of the
projected trends.
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Daymet and PRISM observations
during the first decade of the 21st
century can be attributed to their dif-
ferences in the trajectory of changes
in the number of wet days, e.g., over
Ohio Valley and Upper Midwest
(Figures 12b and 12c). In RCM-SUB,
the projected changes in the mean
annual precipitation and the increas-
ing trends in the number of daily pre-
cipitation extremes across all regions
are consistent with the trajectory of
changes in the number of wet days
(Figure 12c). Many regions, including
the southwest, south, southeast, and
west that exhibit strong increasing
trends in the number of precipitation
extremes also show a decreasing
trend in the number of wet days in
the coming decades. On the other
hand, regions (northwest, northern
Rockies, and Upper Midwest) that
exhibit an increasing trend in mean
annual precipitation are projected to
have little to no change in the number
of wet days in a given year.

4. Summary
and Conclusions

Using a dynamical downscaling fra-
mework, we provide high-resolution
ensemble climate projections over
the continental U.S. Most of our ana-
lyses are summarized in Figure 13.
Observations provide discernable
evidence that the hydrological cycle
is changing over the U.S. Statistically
significant warming trends—a key
driver of the water cycle intensifica-
tion—are visible over many regions
across the U.S., including the north-
east, west, southwest, and northwest
(Figure 13). Associated with this

warming, the northeast and northwest also exhibit significant decreasing trends in the cold extremes.
Similarly, hot extremes have significantly increased over the southwest at the cost of a significant decrease
in the number of precipitation days and the magnitudes of annual precipitation.

All the significant trends in mean annual and extreme cold daily temperatures are also simulated by the RCM-
SUB, shown as arrows with the dotted lines in Figure 13. Without any intervention in the present trajectory of
the greenhouse gas emissions, average warming trends over the four decades (2011–2050) are expected to
be between 1–2°C across the U.S. (Figure 13). However, every region in the continental U.S. will start experi-
encing a frequent occurrence of years with magnitudes of warming 2°C or greater before the mid-21st cen-
tury (Figure 11a). With the exception of regions that represent the present-day warming hole in the parts of
the midwest, Ohio Valley, and south, all regions are expected to experience statistically significant increase in

Figure 12. Same as in Figure 11 but for annual precipitation, extreme preci-
pitation days and wet days.
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days whenmaximum daily temperatures exceed the 95th percentile of their historical daily threshold (at least
>12 days per year, Figure 13). In the south and Ohio Valley, most of the precipitation increase occurs later
during the hydrological year in the form of excess warm season rainfall, which is reflected in the delay in
the timing of 50% of the annual precipitation during a hydrological year (Figure 6d). This excessive warm sea-
son rainfall should partly help limit the increase in the frequency of daily hot extremes, which explains the
lack of significant trends in hot extremes in these regions. A decrease in cold temperature extremes is also
expected across the U.S.; however, these trends are only significant over the southeast, northeast, west,
and southwest. It is important to note that regions with significant trends in both hot and cold extremes
are also the ones that are expected to reach a warming level beyond the baseline variability before 2040,
shown as the numbers in each region in Figure 13, meaning that both milder winters and hotter summers
are needed for accelerated warming.

Theoretically, a 1–2°C average warming should expect to produce mean annual and extreme daily precipita-
tion changes up to 5–10% and 10–20%, respectively [e.g., Berg et al., 2013; Haerter and Berg, 2009; Held and
Soden, 2006; Lenderink and Van Meijgaard, 2008; Muller et al., 2011; Singleton and Toumi, 2013; Stephens and
Hu, 2010], meaning that a significant trend in mean and extreme precipitation changes is highly unlikely in
the next few decades. Our projections are consistent with the theoretical understandings both in magnitude
and the statistical insignificance of precipitation trends. However, with the exception of the west and south-
west, the future trajectory of trends is consistent across the members of RCM-SUB (Figures 12 and 13), mean-
ing that the emergence of significant precipitation trends beyond the mid-21st century is quite a possibility.
Moreover, it is important to note that observed hydrometrological anomalies (prevailing drought) over the
southwest and California are predominantly driven by the observed significant warming trends
[Diffenbaugh et al., 2015; Swain et al., 2014]. Since RCM-SUB exhibits significant future trends in both mean

Figure 13. Summary of the results over each of the nine NCEI regions. Each color represents a unique variable. Arrows
represent the regions where both PRISM and Daymet exhibit statistically significant trend in the baseline period. Arrows
are dotted if similar and statistically significant trends are exhibited in the corresponding baseline period of RCM-SUB.
Horizontal color bars with diagonal lines represent the regions where seven or more members of RCM-SUB exhibit similar
and statistically significant trends in the future period. Horizontal color bars with horizontal lines represent the regions
where seven or more members of RCM-SUB exhibit similar but statistically insignificant trend in the future period.
Horizontal color bars without any lines represent the regions where less than seven ensemble members exhibit similar or
significant trends in the future period. Numbers in each region represent the year when projected surface warming is
above the baseline variability (> baseline standard deviation of annual mean temperature).
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and extreme temperatures over these regions, inconsistencies in precipitation projections do not necessarily
reduce the likelihood of the inherent climate risk associated with warmer temperature.

Snow hydrology apparently plays a critical role in regulating the temperature response over the regions that
receive a significant portion of cold season precipitation in the form of snow, consistent with the observa-
tions [e.g., Groisman et al., 1994]. Decreases in snow-covered area expose more land surface with much lower
albedo, accelerating the rate of surface warming. On the other hand, a reduction in snow days reduces the
number of days with fresh snow on the ground, which has a higher albedo than old snow. Alternatively, war-
mer temperatures accelerate the rate of snowmelt, which further decreases surface albedo, as melting snow
albedo is less than frozen or dry snow albedo. Overall, our results indicate that such changes in snow hydrol-
ogy can determine the magnitudes and timing of surface warming by altering the surface energy budget
through the snow albedo feedback (Figure 9). Nonetheless, projected changes in hydroclimate across the
U.S. can have profound impacts on natural and human systems, including snow dominated water resources,
hydropower generation, tree mortality, and forest fires [e.g., Ashfaq et al., 2013; Barnett et al., 2005;
Diffenbaugh et al., 2015; Kao et al., 2015; Williams et al., 2013].

Overall, the RCM-SUB simulations provide a comprehensive and detailed understanding of the potential
changes in the regional climate over the U.S. However, we acknowledge the fact that dynamically downscaled
climateprojections are sensitive to thechoiceof the regional climatemodel [e.g.,Ayar et al., 2016]particularly in
the simulation of warm season precipitation and convectively driven regional-scale circulations. Therefore,
despite theuseof a largenumberofdrivingGCMs, theuseof a singleRCM inourmodeling setup limits its ability
to capture the model based uncertainties associated with RCM internal biases and convective parameteriza-
tions [e.g.,Alexandruetal., 2007;Giorgi andGutowski, 2015].Nonetheless,weexpect these simulations tobeuse-
ful for comparison with other approaches involving statistical downscaling, dynamical downscaling using
different RCMs, high-resolution GCMs, and high-resolution variable resolution GCMs and should help toward
the development of robust climate modeling approaches for understanding climate change and its impacts
at regional and local scales. Efforts are in progress tomake parts of this data available for the scientific commu-
nity throughOakRidgeNationalLaboratory (ORNL)'sNationalExtremeEventsDataandResearchCenter (NEED).
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